Prayas at EmoInt 2017: An Ensemble of Deep Neural Architectures for Emotion Intensity Prediction in Tweets

نویسندگان

  • Prayas Jain
  • Pranav Goel
  • Devang Kulshreshtha
  • Kaushal Kumar Shukla
چکیده

The paper describes the best performing system for EmoInt a shared task to predict the intensity of emotions in tweets. Intensity is a real valued score, between 0 and 1. The emotions are classified as anger, fear, joy and sadness. We apply three different deep neural network based models, which approach the problem from essentially different directions. Our final performance quantified by an average pearson correlation score of 74.7 and an average spearman correlation score of 73.5 is obtained using an ensemble of the three models. We outperform the baseline model of the shared task by 9.9% and 9.4% pearson and spearman correlation scores respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PLN-PUCRS at EmoInt-2017: Psycholinguistic features for emotion intensity prediction in tweets

Linguistic Inquiry and Word Count (LIWC) is a rich dictionary that map words into several psychological categories such as Affective, Social, Cognitive, Perceptual and Biological processes. In this work, we have used LIWC psycholinguistic categories to train regression models and predict emotion intensity in tweets for the EmoInt-2017 task. Results show that LIWC features may boost emotion inte...

متن کامل

UWat-Emote at EmoInt-2017: Emotion Intensity Detection using Affect Clues, Sentiment Polarity and Word Embeddings

This paper describes the UWaterloo affect prediction system developed for EmoInt2017. We delve into our feature selection approach for affect intensity, affect presence, sentiment intensity and sentiment presence lexica alongside pretrained word embeddings, which are utilized to extract emotion intensity signals from tweets in an ensemble learning approach. The system employs emotion specific m...

متن کامل

GradAscent at EmoInt-2017: Character and Word Level Recurrent Neural Network Models for Tweet Emotion Intensity Detection

The WASSA 2017 EmoInt shared task has the goal to predict emotion intensity values of tweet messages. Given the text of a tweet and its emotion category (anger, joy, fear, and sadness), the participants were asked to build a system that assigns emotion intensity values. Emotion intensity estimation is a challenging problem given the short length of the tweets, the noisy structure of the text an...

متن کامل

Textmining at EmoInt-2017: A Deep Learning Approach to Sentiment Intensity Scoring of English Tweets

This paper describes our approach to the Emotion Intensity shared task. A parallel architecture of Convolutional Neural Network (CNN) and Long short term memory networks (LSTM) alongwith two sets of features are extracted which aid the network in judging emotion intensity. Experiments on different models and various features sets are described and analysis on results has also been presented.

متن کامل

deepCybErNet at EmoInt-2017: Deep Emotion Intensities in Tweets

This working note presents the methodology used in deepCybErNet submission to the shared task on Emotion Intensities in Tweets (EmoInt) WASSA-2017. The goal of the task is to predict a real valued score in the range [0-1] for a particular tweet with an emotion type. To do this, we used Bag-of-Words and embedding based on recurrent network architecture. We have developed two systems and experime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017